Vegetation anomalies caused by antecedent precipitation in most of the world
نویسندگان
چکیده
Quantifying environmental controls on vegetation is critical to predict the net effect of climate change on global ecosystems and the subsequent feedback on climate. Following a non-linear Granger causality framework based on a random forest predictive model, we exploit the current wealth of multi-decadal satellite data records to uncover the main drivers of monthly vegetation variability at the global scale. Results indicate that water availability is the most dominant factor driving vegetation globally: about 61% of the vegetated surface was primarily water-limited during 1981–2010. This included semiarid climates but also transitional ecoregions. Intraannually, temperature controls Northern Hemisphere deciduous forests during the growing season, while antecedent precipitation largely dominates vegetation dynamics during the senescence period. The uncovered dependency of global vegetation on water availability is substantially larger than previously reported. This is owed to the ability of the framework to (1) disentangle the co-linearities between radiation/temperature and precipitation, and (2) quantify non-linear impacts of climate on vegetation. Our results reveal a prolonged effect of precipitation anomalies in dry regions: due to the long memory of soil moisture and the cumulative, nonlinear, response of vegetation, water-limited regions show sensitivity to the values of precipitation occurring three months earlier. Meanwhile, the impacts of temperature and radiation anomalies are more immediate and dissipate shortly, pointing to a higher resilience of vegetation to these anomalies. Despite being infrequent by definition, hydro-climatic extremes are responsible for up to 10% of the vegetation variability during the 1981–2010 period in certain areas, particularly in water-limited ecosystems. Our approach is a first step towards a quantitative comparison of the resistance and resilience signature of different ecosystems, and can be used to benchmark Earth system models in their representations of past vegetation sensitivity to changes in climate.
منابع مشابه
Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales
Satellite observations of surface reflected solar radiation contain information about variability in the absorption of solar radiation by vegetation. Understanding the causes of variability is important for models that use these data to drive land surface fluxes or for benchmarking prognostic vegetation models. Here we evaluated the interannual variability in the new 30.5-year long global satel...
متن کاملEarly Drought Detection by Spectral Analysis of Satellite Time Series of Precipitation and Normalized Difference Vegetation Index (NDVI)
The time lag between anomalies in precipitation and vegetation activity plays a critical role in early drought detection as agricultural droughts are caused by precipitation shortages. The aim of this study is to explore a new approach to estimate the time lag between a forcing (precipitation) and a response (NDVI) signal in the frequency domain by applying cross-spectral analysis. We prepared ...
متن کاملImpacts of large-scale climatic disturbances on the terrestrial carbon cycle
BACKGROUND The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical mod...
متن کاملInvestigating the Influence of Drought on Trend of Vegetation Changes in Arid and Semiarid Regions, Using Remote Sensing Technique: A Case Study of Hormozgan province)
Introduction: As a hazardous complex climate condition, drought has affected many parts of the world, and in times when its duration is prolonged, its damage would be tremendous, affecting various sectors such as agriculture, environment, economic, social, etc. Due to the wide range of this phenomenonchr('39')s effects on all ecosystems, especially in arid and semiarid regions, continuous monit...
متن کاملتعیین کمّی سلامت پوشش گیاهی بر اساس قابلیت بازگشتپذیری
The correct management in natural ecosystems is not possible without knowledge of the health in its sectors. Vegetation is the most significant sector in ecosystem that has important role in its health. Resilience is one of the defining features of health vegetation The term resilience was first introduced in the study of ecological systems and demonstrates the ability of the ecosystem to mai...
متن کامل